

EXPANDING ASPECT-ORIENTED PROGRAMMING TOWARD ADVANCED DYNAMIC

NETWORK LEVEL ASPECTS IN C++

RAWAN KASASBEH, SUFYAN AL-MAJALI & ARAFAT AWAJAN

Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan

ABSTRACT

Programming models are continuously improving to achieve two principals, more modularity and less

crosscutting concerns. The final improvement was the emergence of Aspect Oriented programming (AOP), AOP emerged

to improve previous programming models rather than replace their work. The main improvement AOP has caused was the

increase in program modularity, reduction of code redundancy and less code scattering. This is done through gathering the

scattered code in one separate class called an aspect, weaving this aspect where needed according to point cuts, this way

the redundant code is limited which results in better code modularization.

Our approach proposes the use of AOP along with networking, through allowing the introduction of a new aspect

at runtime not only on a single computer, but at a network level. Therefore, there are two dimensions to our work, first

allowing the aspect to be introduced at runtime gives better dynamicity and availability to the application, the program is

dynamic since it is applied at runtime of the program and does not need to be introduced at runtime, it is available since

there is no need to shutdown or restart the program in order to introduce the new code. The second dimension is adding this

work at a network level.

Having a client server like network and having the option to add an aspect to the specified locations on some or all

the client computers, weaving or unweaving the aspect at runtime. As mentioned this work increases dynamicity, flexibility

and availability on the expense of system performance. Although the user should prioritize the most important

requirements before using ADAC++ whether it is more dynamicity and availably or better performance.

KEYWORDS: Aspect Oriented Programming, Advanced Dynamic Weaving, Runtime Weaving, Weaving at Network

Level Dynamic Weaving

Subject Classification: Computer Science Programming

INTRODUCTION

Previously in applications using AOP, the developer needed to introduce the aspect at compile time in order for

the program to run properly. In this paper our work aims at allowing the introduction of the aspect at runtime instead of

compile time. This contribution is intended to be done at a network level. With a client server network, each computer on

this network has its own agent to facilitate communication between other clients and the server, to receive the aspect and

load it into the application code at runtime. The aspect is first introduced and loaded to the server; afterwards it is

distributed to the clients on the network. Our work is done on two different dimensions; the first is related to AOP.

Through introducing the aspect to the application code at runtime. The second dimension is to apply this work on a

network level rather than a single computer. The newly introduced aspect library is first introduced to the server computer

by the administrator, the server distributes the aspect to the required clients on the network. The agents for each client gets

the aspect and loads, weaves the aspect depending on the point cut existing in the program.

International Journal of Computer Science

and Engineering (IJCSE)

ISSN(P): 2278-9960; ISSN(E): 2278-9979

Vol. 3, Issue 1, Jan 2014, 105-112

© IASET

106 Rawan Kasasbeh, Sufyan Al-Majali & Arafat Awajan

The computers on the network might all require the same feature to be added into their code through an aspect,

whether they have the same applications or different applications. For example, if all clients require a security feature to

protect the contents of an application, rather than going through the existing code for all the application classes of each

computer on the network. It is more practical and flexible to introduce the code to the server computer through an aspect,

distribute the aspect to the client computers, weave them according to their point cut at runtime. Following the user has the

option of unweaving the aspect. Again, what is meant by dynamic in the title is to introduce an aspect dynamically while

the application is already running, weaving at the network level where new aspects can be introduced, woven and unwoven

at runtime. This work adds new properties such as more modularity, less crosscutting concerns and more availability for

the application.

ADVANCED DYNAMIC AOP SYSTEM RUNNING ON C++ (ADAC++)

Advanced Dynamic AOP System Running on C++ (ADAC++) Approach

As mentioned, previous versions of AOP didn’t allow the introduction of aspects at runtime. An aspect must be

introduced at compile time in order for the application to run correctly. To improve this limitation, ADAC++ allows the

introduction of aspects dynamically at runtime. This task is achieved by using DLL and polymorphism concepts.

The aspect is first created as a DLL, following through the concept of polymorphism used in the virtual advice function,

the aspects will be allowed to run. The result would be different each time depending on the function in DLL.

ADAC++ work is done by creating an aspect as DLL, this aspect is woven and loaded into the application code at

runtime. It does not need to be previously defined, it is only introduced while the program is running. The unweaving

process is the same, the aspect is unwoven while running the program. The improvement made by our approach, is adding

the concept of polymorphism in the advice virtual function, where many DLLs perform the same function but with

different results each time, depending on the function of the DLL.

Advanced Dynamic AOP System Running on C++ (ADAC++) Architecture

The following figure explains the ADAC++ architecture, where a customer requests adding a new concern, this

request is sent to the developer which creates an aspect and compiles it as a DLL. This aspect is then deployed to the

administrator, compiled into the server computer on the network. Following, an admin user will request to weave the

aspect. Once this request is received by main computer, the aspect library is sent to the client machines. It will be received

by each client agent. Applications installed on each client machine will synchronize with the agent and load received

aspects into their memory space, weave them according to point cut expression, once they notice new aspects arrival at the

agent.

The weaving command is a simple line of code written in the following method:

Weave (m): An unweaving request is done by a request form a customer to the administrator to unweave a

specific aspect form the application code, afterwards the admin sends a command to the server computer to unweave an

aspect from all the client computers or some of them, through a line of code such as the following:

Unweave (m): To edit an existing aspect, the intended plan is to first unweave the aspect in the same method

mentioned previously, change on the content of the aspect, following inserting the aspect through weaving it to the code as

shown in the following figure.

Expanding Aspect-Oriented Programming toward Advanced Dynamic Network Level Aspects in C++ 107

Figure 1: ADAC++ Framework Stages

The components of ADAC++ frameworks are as following:

 Dynamic Aspect Generator: This component of ADAC++ is used to apply the following. First depending on the

end user requirements, the developer will build the aspect through a DLL, compile aspects and prepare them to be

deployed dynamically within the network by the administrator.

 Dynamic Aspects Library Store: After the first step is done, the aspect is created and ready to be deployed.

DLL Store represents the area in which all the created aspects are stored. This gives the user the ability to request

weaving these aspects at any point in the application code. Any aspect can be woven if it is only available within

store.

 Management Station: The main functions accomplished by the management station is to hold a database of

information about the network. To communicate with its agents installed on the network hosts.

 Weaver: Weaving is the process of composing core functionality modules with aspects. Aspect languages have

defined several mechanisms for weaving, including static weaving through inserting aspects at system load and

weaving at runtime, or dynamic weaving through introducing aspect at compile time and weaving aspects at

system runtime.

 ADAC++ Network Protocol: A network protocol defines rules and conventions for communication between

network devices. Network protocols include mechanisms for devices to identify and make connections with each

other, as well as formatting rules that specify how data is packaged into messages sent and received. Some

protocols also support message acknowledgement and data compression designed for reliable and/or

high-performance network communication. This component allows the Management station to communicate

commands of weaving and unweaving within network.

108 Rawan Kasasbeh, Sufyan Al-Majali & Arafat Awajan

 Server Agent and Client Agent: The agent is software that will be installed on every computer in the network

including the server computer and all the client computers, every host agent stays in contact with MS using the

network protocol in order to receive the weaving, unweaving aspect requests.

As an example that can benefit from our approach, is the logging concern. If the end user requested the addition of

a log concern, a user should enter a username and password in order to enter the application. Giving each user certain

restrictions, access limitations based on the job rank, this is done by adding a log concern. The new concern request will

first be sent to the developer; the developer creates a logging aspect as a DLL, and sends it to the administrator in order to

be inserted into the application code.

This aspect will be compiled into the server computer on the network. A request from the administrator will be

sent to weave the logging aspect, once this request is received by main computer, the aspect library is sent to the client

machines, will be received by each client agent. Applications installed on each client machine will synchronize with the

agent, and load received aspects into their memory space. Weave them according to point cut expression, once they notice

new aspects arrival at the agent. Again the logging aspect will be added to the application code while it is still running; it is

woven depending on the point cuts and the advice function. It runs before or after a certain point cut in the code as

specified in the main of the program.

Aspect Oriented Programming at a Network Level

In this part we explain the network dimension of our work in ADAC++. Computer networks and network

applications are growing and changing continuously. New network applications with complicated network and software

requirements are emerging. For instance, wireless networks both local area networks and wide area networks are becoming

common. The applications associated with these network types require great dynamicity from the underlying network and

software technology used to build them. Two main factors impact the network’s flexibility toward deploying new policies

to an existing network: the software design, and the network protocols used for deploying new software changes [3].

In ADAC++ the network is a client server like network, with both clients and servers having agents in order to

communicate with each other, and receiver new commands, such as weaving and unweaving aspect , modifying existing

aspects, etc. The computers on the network might all require the same feature to be added into their code through an aspect,

whether they have the same applications or different applications.

For example, if all clients require a security feature to protect the contents of an application, rather than going

through the existing code for all the application classes of each computer on the network. It is more practical and flexible

to introduce the code to the server computer through an aspect, distribute the aspect to the client computers, weave them

according to their point cut at runtime. Following the user has the option of unweaving the aspect. Again, what is meant by

dynamic in the title is to introduce an aspect dynamically while the application is already running, weaving at the network

level where new aspects can be introduced, woven and unwoven at runtime. This work adds new properties such as more

modularity, less crosscutting concerns and more availability for the application since the weaving process does not require

restarting or shutdown.

An example is given in Figure(3), where 4 different computers are in a certain network, through ADAC++ aspects

can be woven to all computers, one computer or a part of them. Also unweaving of a certain aspect can be done to all

computers , one computer or some of them. This is done at runtime by giving commands to the agents that are given for

each computer.

Expanding Aspect-Oriented Programming toward Advanced Dynamic Network Level Aspects in C++ 109

Figure 2: Networking in ADAC++

EVALUATION OF ADVANCED DYNAMIC AOP SYSTEM RUNNING ON C++ (ADAC++)

The evaluations aim is to view the advantages of ADAC++ over previous AOP versions. As mentioned previously

ADAC++ has benefits, of flexibility for the developer to add new aspects to the application code while running or modify

existing aspects to add a certain function or delete or modify one. On the other hand it is worth mentioning that AOP in

general has limitations, the main two are the following:

The limitation which is concerned for ADAC++.While ADAC++ improves flexibility and dynamicity through

allowing the introduction of the aspect containing the new code at runtime, without the need to restart or cause system

shutdown. An important downfall to this is lower system performance for the program using ADAC++, again although

dynamicity and flexibility issues are solved in ADAC++, its worth mentioning this is done at the expense of performance,

since the program will function slower than without using ADAC++ In the evaluation of ADAC++ was shown that this

approach increased flexibility and dynamicity through introducing a new concept of introducing the aspect at runtime of

the program at the network level, but this work lowers the performance and increases the complexity of the code at the

same time. While ADAC++ solves some problems, before using this approach the end user should prioritize his concerns,

whether it is system dynamicity and flexibility or better performance and less complexity. To prove this work a comparison

between static, dynamic and advanced dynamic weaving was held in Table 1.

Table 1: Comparison between Static, Dynamic, Advanced Dynamic Weaving

 Static Weaving Dynamic Weaving
Advanced Dynamic

Weaving

Aspect introduction time
Aspect introduced

at compile time

Aspect introduced at

compile time

Aspect introduced at

run time

Aspect Weaving
Aspect is woven at

compile time

Aspect is woven at

compile time

Aspect is woven at

runtime

Point cut definition

Needs multiple

point cuts for

multiple aspects

Needs multiple point

cuts for multiple

aspects

Needs one point cut

for multiple aspects

Aspect unweave Not applicable Can be unwoven Can be unwoven

Frameworks
Aspect J, Aspect

C++

JBOSS,PROSE,

DAC++
Our Framework

Application Maintenance effort Large Medium Minimum

Dynamicity Not Dynamic Moderate High

Flexibility Not Flexible Moderate High

110 Rawan Kasasbeh, Sufyan Al-Majali & Arafat Awajan

SUMMARY AND CONCLUSIONS

AOP is a relatively new programming paradigm, striving to help the developer separate concerns to overcome the

problems with crosscutting concerns, which improves modularity, to simplify the code and ease the development and

maintenance. What OOP has done for object encapsulation and inheritance, AOP does for crosscutting concerns.

AOP helps overcoming the problems caused by code tangling and code scattering, which lead to implications of

lower productivity, hard reuse of code and evolving the system. Also it is also easy to add newer functionality, by creating

new aspects.

In this paper, the contribution was adding a new aspect to the application code dynamically at runtime, where the

aspect is woven and unwoven at runtime, unlike previous AOP versions, where the aspect should be introduced previously

to the application for it to work properly. Another importance of this thesis is it works in a rigid language which is C++,

attempting to make it more dynamic.

REFERENCES

1. Alam, F., Evermann, J., Fiech, A.: Modeling for dynamic aspect-oriented development, Proceedings of the 2
nd

Canadian Conference on Compurer Science and Software Engineering, (2010).

2. Almajali, S., Elrad, T.: Coupling Availability and Efficiency for Aspect Oriented Runtime Weaving Systems,

Dynamic Aspects Workshop, pp. 47-55, (2006).

3. Almajali, S. , Elrad, T.: A dynamic aspect oriented system using C++ programming using MOP, Dynamic

Aspects Workshop, pp. 1-8 Key, (2004).

4. Almajali, S., Elrad, T.: Dynamic Network Policies Using Aspect Oriente Network Framework, International

Conference on Systems and International Conference on Mobile Communications and Learning Technologies,

(2006).

5. Ansaloni,D., Binder, W., Moret, PH, Villazon, A.: Dynamic Aspect-oriented programming in java, Faculty of

Informatrics, University of Lugano, Switzerland, (2012).

6. Apel, S., Batory, D,: How Aspect J is Used An Analysis of Eleven Aspect J Programs. Department of Informatics

and Mathematics University of Passau, Germany, (2008).

7. Assaf, A., Noye, J.: Dynamic Aspect J, DLS '08 Proceedings of the 2008 symposium on Dynamic languages,

(2008).

8. An Oracle White Paper: Comparing Oracle Glass Fish Server and J Boss: Which Application Server Is Right for

You, (2010).

9. Chiba, S.: A Study of Dynamic Weaving for Aspect-Oriented Programming, A Dissertation Submitted to

Department of Mathematical and Computing Sciences, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology, (2005).

10. Dyer, R., Rajan, H.: Supporting dynamic aspect-oriented features, Iowa State University, Ames, (2010).

11. arc a, M., Llewellyn-Jones, D., Ortin, F., Merabti, M.: Applying dynamic separation of aspects to distributed

system security, IET Software, Volume 6, Issue 3, (2012).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10841
http://digital-library.theiet.org/search;jsessionid=s1cvy4r6una6.x-iet-live-01?value1=&option1=all&value2=M.+Garc%c4%b1%cc%81a&option2=author
http://digital-library.theiet.org/search;jsessionid=s1cvy4r6una6.x-iet-live-01?value1=&option1=all&value2=D.+Llewellyn-Jones&option2=author
http://digital-library.theiet.org/search;jsessionid=s1cvy4r6una6.x-iet-live-01?value1=&option1=all&value2=F.+Ortin&option2=author
http://digital-library.theiet.org/search;jsessionid=s1cvy4r6una6.x-iet-live-01?value1=&option1=all&value2=M.+Merabti&option2=author
http://digital-library.theiet.org/content/journals/iet-sen;jsessionid=s1cvy4r6una6.x-iet-live-01
http://digital-library.theiet.org/content/journals/iet-sen/6/3;jsessionid=s1cvy4r6una6.x-iet-live-01

Expanding Aspect-Oriented Programming toward Advanced Dynamic Network Level Aspects in C++ 111

12. Kienzle, J., AlAbed, W., Fleurey, F., Jezequel, JM., Klein, J.: Aspect-Oriented Design with Reusable Aspect

Models, INRIA, Centre Rennes - Bretagne Atlantique, Rennes, France.CRP Gabriel Lippmann and University of

Luxembourg, Luxembourg, (2010).

13. Katic, M., Fertalj, K.: Model for Dynamic Evolution of Aspect-Oriented Software, Software Maintenance and

Reengineering (CSMR), European Conference, (2011).

14. Laddad, R: Aspect J In Action. Second Edition, Manning Publications, chapter ten,(2010).

15. Ortiz, G., Bordbar, B., Hernández, J.: Evaluating the Use of AOP and MDA in Web Service Development,

Internet and Web Applications and Services, third International Conference, (2008).

16. Ostermann, K., Mezini, M.: Object-Oriented Composition Untangled. Published in OOPSLA '01 Proceedings of

the 16th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,

Pages 283- 299, (2001).

17. Schroder-Preikschat, W., Lohmann, D., Scheler, F., Gilani, W., Spinczyk, O.: Static and dynamic weaving in

system software with aspect++, System Sciences, Proceedings of the 39th Annual Hawaii International

Conference, Volume.9, (2006).

18. Tartler, R. and Lohmann, D. and Scheler, F. and Spinczyk, O.: Aspect C++ An integrated approach for static and

dynamic adaptation of system software, riedrich-Alexander University, Erlangen-Nuremberg, Germany, (2010).

19. Tartler, R., Lohmann, D., Schroder-Preikschat, W, spinczyk, O.: Dynamic Aspect C++ Generic Advice at Any

Time, Proceedings of the 2009 conference on New Trends in Software Methodologies, (2009)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5740650
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5740650
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4545573
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10548
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10548

